

NEET 2017

TEST DATE : 07.05.2017

Test Booklet Code

Important Instructions :

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on side-1 and **side-2** carefully with blue/black ball point pen only.
- 2. The test is of 3 hours duration and Test Booklet contains **180** questions. Each question carries 4 marks. For each correct response, the candidate will get **4** marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are **720**.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **W**. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the .Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/ Answer Sheet.
- 8. Use of white fluid for correction is **NOT** permissible on the Answer Sheet.
- 9. Each candidate must show on demand his her Admit Card to the Invigilator.
- 10. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over Answer Sheet and dealt with as an unfair means case.
- 12. Use of Electronic/ Manual Calculator is prohibited.
- 13. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 15. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

Name of the Candidate (in Capitals)						
Roll Number	: in figures					
	: in words					
Centre of Exam	ination (in Capitals) :					
Candidate's Signature		Invigilator's Signature				
Fascimile signature stamp of						
Centre Superin	tendent					

BIOLOGY

SECTION - I

1.	Which one of	of the follow	ing stateme	ents is corre	ct, with 1	eference to enzy	mes ?	[Ans. (2)]
	 (1) Apoenzyme = Holoenzyme + Coenzyme (3) Coenzyme = Apoenzyme + Holoenzyme 			(2)	(2) Holoenzyme = Apoenzyme + Coenzyme			
				(4)	Holoenzyme = 0	Coenzyme + Co-fac	etor	
2.	Which cells	of 'Crypts of	f Lieberku	hn' secrete	antibacte	rial lysozyme?		[Ans. (2)]
	(1) Argentaf	fin cells	(2) Panet	h cells	(3)	Zymogen cells	(4) Kupffer cel	ls
3.	Phosphoeno	l pyruvate (l	PEP) is the	primary CC	D ₂ accept	or in :		[Ans. (2)]
	(1) C ₃ plants	5	(2) C ₄ pl	ants	(3)	C ₂ plants	(4) C_3 and C_4 g	olants
4.	Match the (Column - I	following I) and selec	sexually t t the correc	ransmitted et option.	diseases	(Column - I)) with their cause	ative agent [Ans. (1)]
	Column	- I				Column – II		
	(a) Gonorrh	ea			(i)	HIV		
	(b) Syphilis				(ii)	Neisseria		
	(c) Genital V	Warts			(iii)Treponema		
	(d) AIDS				(iv	(iv) Human Papilloma – Virus		
	Options :							
	(a)	(b)	(c)	(d)				
	(1) (ii)	(iii)	(iv)	(i)				
	(2) (iii)	(iv)	(i)	(ii)				
	(3) (iv)	(ii)	(iii)	(i)				
	(4) (iv)	(iii)	(ii)	(i)				
5.	Which amore to plants as w	ng the follow well as anim	ing are the als and car	smallest liv survive wi	ing cells thout oxy	, known without /gen ?	a definite cell wall,	pathogenic [Ans. (3)]
	(1) Bacillus		(2) Pseud	domonas	(3)	Mycoplasma	(4) Nostoc	
6.	Which one f	from those g	iven below	is the perio	d for Me	ndel's hybridizati	ion experiments?	[Ans. (1)]
	(1) 1856 - 1	863	(2) 1840	- 1850	(3)	1857 - 1869	(4) 1870 – 187	7
7.	Flowers whi by :	ch have sin	gle ovule in	n the ovary	and are j	backed into inflo	rescence are usually	y pollinated [Ans. (3)]
	(1) Water		(2) Bee		(3)	Wind	(4) Bat	
8.	Asymptote i	n a logistic	growth cur	ve is obtaine	ed when			[Ans. (2)]
	(1) The valu	e of 'r' appi	oaches zer	0	(2)	K = N		
	(3) $K > N$				(4)	K < N		

W

1

9.	Out of 'X' pairs of rib	s in humans only 'Y' pairs are	e true ribs. Select the opt	ion that correctly	represents
	values of X and Y and	d provides their explanation :			[Ans. (1)]
	(1) $X = 12, Y = 7$	True ribs are attached dorsal	ly to vertebral column a	nd ventrally to th	e sternum.
	(2) $X = 12, Y = 5$	True ribs are attached dorsal	ly to vertebral column a	nd sternum on the	e two ends
	(3) $X = 24, Y = 7$	True ribs are dorsally attached	ed to vertebral column b	ut are free on cen	tral side
	(4) $X = 24, Y = 12$	True ribs are dorsally attached	ed to vertebral column b	ut are free on ver	tral side
10.	MALT constitutes ab	out percer	t of the lymphoid tissue	in human body.	[Ans. (1)]
	(1) 50%	(2) 20%	(3) 70%	(4) 10%	
11.	Homozygous pureline	es in cattle can be obtained by	':		[Ans. (1)]
	(1) mating of related	individuals of same breed	(2) mating of unrelated	d individuals of s	ame breed
	(3) mating of individu	uals of different breed	(4) mating of individu	als of different sp	pecies
12.	Among the following	characters, which one was no	ot considered by Mendel	in his experimen	ts on pea?
	(1) Stem-Tall or Dwa	rf	(2) Trichomes - Gland	lular or non-gland	dular
	(3) Seed - Green or Y	Tellow	(4) Pod - Inflated or C	onstricted	[Ans. (2)]
13.	Which of the followin ATP?	ng cell organelles is responsib	ble for extracting energy	from carbohydra	tes to form [Ans. (4)]
	(1) Lysosome	(2) Ribosome	(3) Chloroplast	(4) Mitochonda	rion
14.	If there are 999 bases 901 is deleted such th	in an RNA that codes for a p at the length of the RNA beco	rotein with 333 amino ac omes 998 bases, how ma	cids, and the base my codons will b	e at position e altered ?
	(1) 1	(2) 11	(3) 33	(4) 333	[Ans. (3)]
15.	Which of the following	ng are found in extreme saline	conditions ?		[Ans. (1)]
	(1) Archaebacteria	(2) Eubacteria	(3) Cyanobacteria	(4) Mycobacter	ria
16.	Receptor sites for neu	rotransmitters are present on	:		[Ans. (4)]
	(1) membranes of syr	naptic vesicles	(2) pre-synaptic memb	orane	
	(3) tips of axons		(4) post-synaptic mem	Ibrane	
17.	Artificial selection to	obtain cows yielding higher i	nilk output represents :		[Ans. (2)]
	(1) stabilizing selection	on as it stabilizes this characte	er in the population.		
	(2) directional as it pu	ushes the mean of the characte	er in one direction.		
	(3) disruptive as it s output.	plits the population into two	o, one yielding higher	output and the o	other lower
	(4) stabilizing follow	ed by disruptive as it stabilize	s the population to produ	uce higher yieldii	ng cows.
18.	The hepatic portal ver	in drains blood to liver from :			[Ans. (4)]
	(1) Heart	(2) Stomach	(3) Kidneys	(4) Intestine	
19.	The water potential of	f pure water is :			[Ans. (1)]
	(1) Zero		(2) Less than zero		
	(3) More than zero bu	at less than one	(4) More than one		
20.	Which of the following	ng represents order of 'Horse'	?		[Ans. (2)]
	(1) Equidae	(2) Perissodactyla	(3) Caballus	(4) Ferus	

_ 2 _

NEE	T – 2017		W
21.	Alexander Von Humbolt described for the first	st time :	[Ans. (3)]
	(1) Ecological Biodiversity	(2) Laws of limiting factor	
	(3) Species area relationships	(4) Population Growth equation	
22.	DNA fragments are :		[Ans. (2)]
	(1) Positively charged		
	(2) Negatively charged		
	(3) Neutral		
	(4) Either positively or negatively charged de	pending on their size	
23.	A baby boy aged two years is admitted to p dentist observed that the boy had twenty teeth	blay school and passes through a dental check Which teeth were absent?	- up. The [Ans. (3)]
	(1) Incisors (2) Canines	(3) Pre-molars (4) Molars	
24.	Anaphase Promoting Complex (APC) is a pro of animal cells. If APC is defective in a huma	otein degradation machinery necessary for prop n cell which of the following is expected to occ	per mitosis cur ?
	(1) Chromosomes will not condense		[Ans. (3)]
	(2) Chromosomes will be fragmented		
	(3) Chromosomes will not segregate		
	(4) Recombination of chromosome arms will	occur	
25.	An important characteristic that Hemichordate	es share with Chordates is :	[Ans. (3)]
	(1) absence of notochord	(2) ventral tubular nerve cord	
	(3) pharynx with gill slits	(4) pharynx without gill slits	
26.	The genotypes of a Husband and Wife are I ^A I	^B and I ^A i.	[Ans. (3)]
	Among the blood types of their children, how	many different genotypes and phenotypes are	possible ?
	(1) 3genotypes; 3phenotypes	(2) 3genotypes; 4phenotypes	
	(3) 4genotypes; 3phenotypes	(4) 4genotypes; 4phenotypes	
27.	Transplantation of tissues/organs fails often of immune-response is responsible for such re-	due to non-acceptance by the patient's body. Vejections?	Which type [Ans. (2)]
	(1) Autoimmune response	(2) Cell - mediated immune response	
	(3) Hormonal immune response	(4) Physiological immune response	
28.	Adult human RBCs are enucleate. Which o explanation for this feature ?	f the following statement(s) is / are most ap	ppropriate [Ans. (1)]
	(a) They do not need to reproduce		
	(b) They are somatic cells		
	(c) They do not metabolize		
	(d) A11 their internal space is available for ox	kygen transport	
	Options :		
	(1) Only(d) (2) Only (a)	(3) (a),(c)and(d) (4) (b)and(c)	
29.	Lungs are made up of air-filled sacs, the alve because of :	eoli. They do not collapse even after forceful	expiration, [Ans. (1)]
	(1) Residual Volume	(2) Inspiratory Reserve Volume	
	(3) Tidal Volume	(4) Expiratory Reserve Volume	

- 3 -

NEE	T – 2017		W			
30.	Zygotic meiosis is characteristic of :		[Ans. (4)]			
	(1) Marchantia (2) Fucus	(3) Funaria	(4) Chlamydomonas			
31.	Select the correct route for the passage of spe	erms in male frogs :	[Ans. (4)]			
	(1) Testes \rightarrow Bidder's canal \rightarrow Kidney \rightarrow	Vasa efferentia \rightarrow Urino	genital duct \rightarrow Cloaca			
	(2) Testes \rightarrow Vasa efferentia \rightarrow Kidney \rightarrow Seminal Vesicle \rightarrow Urinogenital duct \rightarrow Cloaca					
	(3) Testes \rightarrow Vasa efferentia \rightarrow Bidder's ca	anal \rightarrow Ureter \rightarrow Cloaca				
	(4) Testes \rightarrow Vasa efferentia \rightarrow Kidney \rightarrow	Bidder's canal \rightarrow Urino	genital duct \rightarrow Cloaca			
32.	Which one of the following statements is not	valid for aerosols?	[Ans. (3)]			
	(1) They are harmful to human health					
	(2) They alter rainfall and monsoon patterns					
	(3) They cause increased agricultural product	tivity				
	(4) They have negative impact on agricultura	l land				
33.	Viroids differ from viruses in having :		[Ans. (4)]			
	(1) DNA molecules with protein coat	(2) DNA molecule	es without protein coat			
	(3) RNA molecules with protein coat	(4) RNA molecule	es without protein coat			
34.	During DNA replication, Okazaki fragments are used to elongate :					
	(1) The leading strand towards replication fork.					
	(2) The lagging strand towards replication fork.					
	(3) The leading strand away from replication	fork.				
	(4) The lagging strand away from the replica	tion fork.				
35.	Plants which produce characteristic pneumate	ophores and show vivipary	y belong to : [Ans. (2)]			
	(1) Mesophytes (2) Halophytes	(3) Psammophyte	s (4) Hydrophytes			
36.	The process of separation and purification of	expressed protein before	marketing is called : [Ans. (2)]			
	(1) Upstream processing	(2) Downstream p	rocessing			
	(3) Bioprocessing	(4) Postproduction	n processing			
37.	Identify the wrong statement in context of he	artwood :	[Ans. (3)]			
	(1) Organic compounds are deposited in it					
	(2) It is highly durable					
	(3) It conducts water and minerals efficiently	,				
	(4) It comprises dead elements with highly li	gnified walls				
38.	Spliceosomes are not found in cells of :		[Ans. (4)]			
	(1) Plants (2) Fungi	(3) Animals	(4) Bacteria			
39.	Which of the following statements is correct	?	[Ans. (1)]			
	(1) The ascending limb of loop of Henle is in	npermeable to water.				
	(2) The descending limb of loop of Henle is i	impermeable to water.				
	(3) The ascending limb of loop of Henle is pe	ermeable to water.				
	(4) The descending limb of loop of Henle is permeable to electrolytes.					

NEE	T – 2017					W
40.	Which ecosystem ha	is the m	aximum biomass ?			[Ans. (1)]
	(1) Forest ecosystem	1		(2) Grassland eco	osystem	
	(3) Pond ecosystem			(4) Lake ecosyste	em	
41.	The final proof for D	DNA as	the generic material c	came from the experiment	ments of :	[Ans. (2)]
	(1) Griffith			(2) Hershey and (Chase	
	(3) Avery, Mcleod a	nd Mc	Carty	(4) Hargobind Kł	norana	
42.	The function of copp	per ions	in copper releasing I	UD's is :		[Ans. (1)]
	(1) They suppress sp	berm me	otility and fertilising c	capacity of sperms.		
	(2) They inhibit gam	netogen	esis.			
	(3) They make uteru	s unsui	table for implantation			
	(4) They inhibit ovu	lation.				
43.	An example of color	nial alga	a is :			[Ans. (2)]
	(1) Chlorella	(2) Volvox	(3) Ulothrix	(4) Spirogyra	ı
44.	Root hairs develop f	rom the	region of :			[Ans. (1)]
	(1) Maturation	(2) Elongation	(3) Root cap	(4) Meristem	atic activity
45.	Hypersecretion of gr	owth H	formone in adults doe	s not cause further in	crease in height, bec	cause :
	(1) Growth Hormon	e becon	nes inactive in adults			[Ans. (2)]
	(2) Epiphyseal plates	s close	after adolescence			
	(3) Bones loose their	r sensiti	vity to Growth Horm	one in adults		
	(4) Muscle fibres do	not gro	w in size after birth			
46.	Which of the follow	ing in s	ewage treatment remo	oves suspended solids	;?	[Ans. (3)]
	(1) Tertiary treatmer	nt		(2) Secondary tre	atment	
	(3) Primary treatmer	nt		(4) Sludge treatm	ent	
47.	Select the mismatch	:				[Ans. (1)]
	(1) Pinus	-	Dioecious			
	(2) Cycas	-	Dioecious			
	(3) Salvinia	-	Heterosporous			
	(4) Equisetum	-	Homosporous			
48.	What is the criterion	for DN	A fragments moveme	ent on agarose gel du	ring gel electrophor	esis ?
	(1) The larger the fra	agment	size, the farther it mo	ves		[Ans. (2)]
	(2) The smaller the f	fragmer	t size, the farther it m	loves		
	(3) Positively charge	ed fragr	nents move to farther	end		
	(4) Negatively charg	ged frag	ments do not move			
49.	In Bougainvillea tho	rns are	the modifications of :			[Ans. (3)]
	(1) Stipules	(2) Adventitious root	(3) Stem	(4) Leaf	
50.	The association of hi	istone H	I1 with a nucleosome	indicates :		[Ans. (3)]
	(1) Transcription is o	occurrii	ıg.	(2) DNA replicat	ion is occurring.	
	(3) The DNA is cond	densed	into a Chromatin Fibr	re. (4) DNA double	helix is exposed.	

- 5 -

NEE	T – 2017			W
51.	A temporary endocrine	gland in the human body i	s :	[Ans. (3)]
	(1) Pineal gland	(2) Corpus cardiacum	(3) Corpus luteum.	(4) Corpus allatum
52.	Select the mismatch :			[Ans. (2)]
	(1) Frankia	- Alnus		
	(2) Rhodospirillum	- Mycorrhiza		
	(3) Anabaena	- Nitrogen fixer		
	(4) Rhizobium	- Alfalfa		
53.	GnRH, a hypothalamic	hormone, needed in reproc	luction, acts on :	[Ans. (2)]
	(1) anterior pituitary gla	and and stimulates secretio	n of LH and oxytocin.	
	(2) anterior pituitary gla	and and stimulates secretio	n of LH and FSH.	
	(3) posterior pituitary g	land and stimulates secreti	on of oxytocin and FSH.	
	(4) posterior pituitary g	land and stimulates secreti	on of LH and relaxin.	
54.	A gene whose expression	on helps to identify transfo	rmed cell is known as :	[Ans. (1)]
	(1) Selectable marker	(2) Vector	(3) Plasmid	(4) Structural gene
55.	Presence of plants arran	nged into well defined vert	ical layers depending on	their height can be seen best [Ans. (2)]
	(1) Tropical Savannah	(2) Tropical Rain Fores	t (3) Grassland	(4) Temperate Forest
56.	Functional megaspore i	n an angiosperm develops	into :	[Ans. (3)]
	(1) Ovule	(2) Endosperm	(3) Embryo sac	(4) Embryo
57.	DNA replication in bac	teria occurs		[Ans. (3)]
	(1) During S phase		(2) Within nucleolus	
	(3) Prior to fission		(4) Just before transcr	ription
58.	Which among these is t	he correct combination of	aquatic mammals?	[Ans. (3)]
	(1) Seals, Dolphins, Sha	arks	(2) Dolphins, Seals, 7	Frygon
	(3) Whales, Dolphins, S	Seals	(4) Trygon, Whales, S	Seals
59.	Coconut fruit is a :			[Ans. (1)]
	(1) Drupe	(2) Berry	(3) Nut	(4) Capsule
60.	Double fertilization is e	exhibited by :		[Ans. (4)]
	(1) Gymnosperms	(2) Algae	(3) Fungi	(4) Angiosperms
61.	Which of the following	components provides stick	xy character to the bacter	rial cell ? [Ans. (4)]
	(1) Cell wall	(2) Nuclear membrane	(3) Plasma membrane	e (4) Glycocalyx
62.	Life cycle of Ectocarpu	as and <i>Fucus</i> respectively a	re :	[Ans. (3)]
	(1) Haplontic, Diplontic	2	(2) Diplontic, Haplod	liplontic
	(3) Haplodiplontic, Dip	lontic	(4) Haplodiplontic, H	aplontic
63.	Which one of the follow	ving is related to Ex-situ co	onservation of threatened	animals and plants ?
	(1) Wildlife Safari park	S	(2) Biodiversity hot s	pots [Ans. (1)]
	(3) Amazon rainforest		(4) Himalayan region	L

- 6 -

NEET - 2017 64. Good vision depends on adequate intake of carotene-rich food. [Ans. (2)] Select the best option from the following statements. (a) Vitamin A derivatives are formed from carotene. (b) The photopigments are embedded in the membrane discs of the inner segment. (c) Retinal is a derivative of Vitamin A. (d) Retinal is a light absorbing part of all the visual photopigments. **Options :** (1) (a) and (b) (2) (a), (c) and (d) (3) (a) and (c) (4) (b), (c) and (d) Thalassemia and sickle cell anemia are caused due to a problem in globin molecule synthesis. Select 65. the correct statement. [Ans. (3)](1) Both are due to a qualitative defect in globin chain synthesis. (2) Both are due to a quantitative defect in globin chain synthesis. (3) Thalassemia is due to less synthesis of globin molecules. (4) Sickle cell anemia is due to a quantitative problem of globin molecules. Which of the following are not polymeric? [Ans. (4)] 66. (1) Nucleic acids (2) Proteins (3) Polysaccharides (4) Lipids A disease caused by an autosomal primary non-disjunction is : [Ans. (1)] 67. (1) Down's Syndrome (2) Klinefelter's Syndrome (3) Turner's Syndrome (4) Sickle Cell Anemia With reference to factors affecting the rate of photosynthesis, which of the following statements is not 68. correct? [Ans. (3)](1) Light saturation for CO₂ fixation occurs at 10% of full sunlight (2) Increasing atmospheric CO_2 concentration up to 0.05% can enhance CO_2 fixation rate (3) C_3 , plants respond to higher temperatures with enhanced photosynthesis while C_4 plants have much lower temperature optimum (4) Tomato is a greenhouse crop which can be grown in CO_2 - enriched atmosphere for higher yield 69. Fruit and leaf drop at early stages can be prevented by the application of : [Ans. (3)](2) Ethylene (4) Gibberellic acid (1) Cytokinins (3) Auxins The region of Biosphere Reserve which is legally protected and where no human activity is allowed is 70. known as : [Ans. (1)] (2) Buffer zone (3) Transition zone (1) Core zone (4) Restoration zone In case of poriferans, the spongocoel is lined with flagellated cells called : 71. [Ans. (3)](4) mesenchymal cells (1) ostia (2) oscula (3) choanocytes 72. A decrease in blood pressure volume will not cause the release of : [Ans. (2)] (2) Atrial Natriuretic Factor (1) Renin (3) Aldosterone (4) ADH 73. A dioecious flowering plant prevents both : [Ans. (2)] (1) Autogamy and xenogamy (2) Autogamy and geitonogamy (3) Geitonogamy and xenogamy (4) Cleistogamy and xenogamy 7

NEE	T – 2017			W		
74.	Which of the following facilitates opening of stoma	tal aperture ?		[Ans. (3)]		
	(1) Contraction of outer wall of guard cells					
	(2) Decrease in turgidity of guard cells					
	(3) Radial orientation of cellulose microfibrils in th	e cell wall of guard	cells			
	(4) Longitudinal orientation of cellulose microfibri	s in the cell wall of	guard cells			
75.	The DNA fragments separated on an agarose gel ca	n be visualised after	r staining with :	[Ans. (4)]		
	(1) Bromophenol blue (2) Acetocarmine	(3) Aniline blue	(4) Ethidium b	romide		
76.	Which statement is wrong for Krebs' cycle ?			[Ans. (4)]		
	(1) There are three points in the cycle where NAD^+	is reduced to NAD	$H + H^+$			
	(2) There is one point in the cycle where FAD^+ is re-	educed to FADH ₂				
	(3) During conversion of succinyl CoA to succinic	acid, a molecule of	GTP is synthesized			
	(4) The cycle starts with condensation of acetyl g	roup (acetyl CoA)	with pyruvic acid to	yield citric		
77.	Mycorrhizae are the example of :			[Ans. (4)]		
	(1) Fungistasis (2) Amensalism	(3) Antibiosis	(4) Mutualism			
78.	The pivot joint between atlas and axis is a type of :			[Ans. (3)]		
	(1) fibrous joint (2) cartilaginous joint	(3) synovial joint	(4) saddle join	t		
79.	Which of the following is correctly matched for the product produced by them ?					
	(1) Acetobacter aceti : Antibiotics	(2) Methanobacte	rium : Lactic acid			
	(3) Penicillium notatum : Acetic acid	(4) Sacchromyces	cerevisiae : Ethanol			
80.	Frog's heart when taken out of the body continues t	o beat for sometime	.	[Ans. (4)]		
	Select the best option from the following statements.					
	(a) Frog is a poikilotherm.	(b) Frog does not	have any coronary ci	rculation.		
	(c) Heart is "myogenic" in nature.	(d) Heart is autoexcitable.				
	Options :					
	(1) Only(c) (2) Only(d)	(3) (a)and(b)	(4) (c)and(d)			
81.	Myelin sheath is produced by :			[Ans. (1)]		
	(1) Schwann Cells and Oligodendrocytes	(2) Astrocytes and Schwann Cells				
	(3) Oligodendrocytes and Osteoclasts	(4) Osteoclasts an	d Astrocytes			
82.	Capacitation occurs in :			[Ans. (4)]		
	(1) Rete testis	(2) Epididymis				
	(3) Vas deferens	(4) Female Repro	ductive tract			
83.	The morphological nature of the edible part of cocc	onut is :		[Ans. (3)]		
	(1) Perisperm (2) Cotyledon	(3) Endosperm	(4) Pericarps			
84.	Which of the following is made up of dead cells?			[Ans. (3)]		
	(1) Xylern parenchyma	(2) Collenchyma				
	(3) Phellem	(4) Phloem				

85.	In case of a couple where the male is having a very low sperm count, which technique will be suitable for fertilisation? [Ans. (3)]				
	(1) Intrauterine transfer				
	(2) Gamete intracytopla	asmic fallopian transfer			
	(3) Artificial Inseminat	ion			
	(4) Intracytoplasmic sp	erm injection			
86.	Which of the following	RNAs should be most abu	ndant in animal cell ?		[Ans. (1)]
	(1) r-RNA	(2) t-RNA	(3) m-RNA	(4) mi-RNA	
87.	The vascular cambium	normally gives rise to :			[Ans. (3)]
	(1) Phelloderm	(2) Primary phloem	(3) Secondary xylem	(4) Periderm	
88.	Which of the following	options gives the correct s	equence of events during	mitosis ?	[Ans. (2)]
	(1) condensation \rightarrow nu	clear membrane disassemb	bly \rightarrow crossing over \rightarrow	segregation \rightarrow to	elophase
	(2) condensation \rightarrow m division \rightarrow segrega	uclear membrane disassention \rightarrow telophase	embly \rightarrow arrangement	at equator \rightarrow	centromere
	(3) condensation \rightarrow cr	ossing over \rightarrow nuclear me	mbrane disassembly \rightarrow	segregation \rightarrow to	elophase
	(4) condensation \rightarrow ar	rangement at equator \rightarrow co	entromere division \rightarrow se	gregation \rightarrow tele	ophase
89.	Which of the following	options best represents the	e enzyme composition of	pancreatic juice	? [Ans. (4)]
	(1) amylase, peptidase,	trypsinogen, rennin			
	(2) amylase, pepsin, try	psinogen, maltase			
	(3) peptidase, amylase,	pepsin, rennin			
	(4) lipase, amylase, try	psinogen, procarboxypeptic	lase		
90.	Attractants and rewards	are required for :			[Ans. (2)]
	(1) Anemophily	(2) Entomophily	(3) Hydrophily	(4) Cleistogam	y

9

PHYSICS

SECTION – II

- 91. Two blocks A and B of masses 3m and m respectively are connected by a massless and inextensible string. The whole system is suspended by a massless spring as shown in figure. The magnitudes of acceleration of A and B immediately after the string is cut, are respectively : [Ans. (2)]
 - (1) $g, \frac{g}{3}$ (2) $\frac{g}{3}, g$

- $(4) \ \frac{g}{3}, \frac{g}{3}$
- 92. The acceleration due to gravity at a height 1 km above the earth is the same as at a depth d below the surface of earth. Then : [Ans. (4)]

(1)
$$d = \frac{1}{2}$$
 km (2) $d = 1$ km (3) $d = \frac{3}{2}$ km (4) $d = 2$ km

93. A particle executes linear simple harmonic motion with an amplitude of 3 cm. When the particle is at 2 cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in seconds is : [Ans. (3)]

(1)
$$\frac{\sqrt{5}}{f}$$
 (2) $\frac{\sqrt{5}}{2f}$ (3) $\frac{4f}{\sqrt{5}}$ (4) $\frac{2f}{\sqrt{5}}$

94. The resistance of a wire is 'R' ohm. If it is melted and stretched to 'n' tunes its original length, its new resistance will be : [Ans. (3)]

(1) nR (2) $\frac{R}{n}$ (3) n^2R (4) $\frac{R}{n^2}$

95. A capacitor is charged by a battery. The battery is removed and another identical uncharged capacitor is connected in parallel. The total electrostatic energy of resulting system : [Ans. (2)]

- (1) increases by a factor of 4 (2) decreases by a factor of 2
- (3) remains the same (4) increases by a factor of 2
- 96. Two rods A and B of different materials are welded together as shown in figure. Their thermal conductivities are K_1 and K_2 . The thermal conductivity of the composite rod will be : [Ans. (1)]
 - (1) $\frac{K_1 + K_2}{2}$ (2) $\frac{3(K_1 + K_2)}{2}$ (3) $K_1 + K_2$ (4) $2(K_1 + K_2)$ $T_1 \underbrace{K_1 \\ K_2 \\ d}$ (5) $T_2 \\ C_2 \\ C_2 \\ C_3 \\ C_4 \\ C_4$

97. The two nearest harmonics of a tube closed at one end and open at other end are 220 Hz and 260 Hz. What is the fundamental frequency of the system ? [Ans. (2)]

(1) 10 Hz (2) 20 Hz (3) 30 Hz (4) 40 Hz

- 98. The bulk modulus of a spherical object is 'B'. If it is subjected to uniform pressure 'p', the fractional decrease in radius is : [Ans. (4)]
 - (1) $\frac{p}{B}$ (2) $\frac{B}{3p}$ (3) $\frac{3p}{B}$ (4) $\frac{p}{3B}$

A 3m Bm 99. A physical quantity of the dimensions of length that can be formed out of c, G and $\frac{e^2}{4f \in_0}$ is [c is velocity of light, G is universal constant of gravitation and e is charge]: [Ans. (1)]

$$(1) \frac{1}{c^2} \left[G \frac{e^2}{4f \epsilon_0} \right]^{\frac{1}{2}} \qquad (2) \ c^2 \left[G \frac{e^2}{4f \epsilon_0} \right]^{\frac{1}{2}} \qquad (3) \ \frac{1}{c^2} \left[\frac{e^2}{G 4f \epsilon_0} \right]^{\frac{1}{2}} \qquad (4) \ \frac{1}{c^2} G \frac{e^2}{4f \epsilon_0}$$

- 100. Figure shows a circuit that contains three identical resistors with resistance $R = 9.0 \Omega$ each, two identical inductors with inductance L = 2.0 mH each, and an ideal battery with emf v = 18 V. The current 'I' through the battery just after the switch closed is, [Ans. (Bonus)]
 - (1) 2 mA
 - (2) 0.2 A
 - (3) 2 A
 - (4) 0 ampere
- 101. One end of string of length l is connected to a particle of mass 'm' and the other end is connected to a small peg on a smooth horizontal table. If the particle moves in circle with speed 'v', the net force on the particle (directed towards center) will be (T represents the tension in the string) [Ans. (1)]

(1) T (2)
$$T + \frac{mv^2}{l}$$
 (3) $T - \frac{mv^2}{l}$ (4) Zero

102. The photoelectric threshold wavelength of silver is 3250×10^{-10} m. The velocity of the electron ejected from a silver surface by ultraviolet light of wavelength 2536×10^{-10} m is : [Ans. (1, 2)] (Given h = 4.14×10^{-15} eVs and $c = 3 \times 10^8$ ms⁻¹)

(1)
$$\approx 6 \times 10^5 \text{ ms}^{-1}$$
 (2) $\approx 0.6 \times 10^6 \text{ ms}^{-1}$ (3) $\approx 61 \times 10^3 \text{ ms}^{-1}$ (4) $\approx 0.3 \times 10^6 \text{ ms}^{-1}$

103. Radioactive material 'A' has decay constant '8}' and material 'B' has decay constant '}'. Initially they have same number of nuclei. After what time, the ratio of number of nuclei of material 'B' to that

'A' will be
$$\frac{1}{e}$$
? [Ans. (2)]

(1)
$$\frac{1}{3}$$
 (2) $\frac{1}{73}$ (3) $\frac{1}{83}$ (4) $\frac{1}{93}$

104. A rope is wound around a hollow cylinder of mass 3 kg and radius 40 cm. What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N? [Ans. (3)]

(1)
$$25 \text{ m/s}^2$$
 (2) 0.25 rad/s^2 (3) 25 rad/s^2 (4) 5 m/s^2

105. Two cars moving in opposite directions approach each other with speed of 22 m/s and 16.5 m/s respectively. The driver of the first car blows a horn having a frequency 400 Hz. The frequency heard by the driver of the second car is [velocity of sound 340 m/s] : [Ans. (4)]

(1)
$$350 \text{ Hz}$$
 (2) 361 Hz (3) 411 Hz (4) 448 Hz

- 106. A 250 Turn rectangular coil of length 2.1 cm and width 1.25 cm carries a current of 85 ~ A and subjected to a magnetic field of strength 0.85 T. Work done for rotating the coil by 180° against the torque is :
 [Ans. (1)]
 - (1) $9.1 \sim J$ (2) $4.55 \sim J$ (3) $2.3 \sim J$ (4) $1.15 \sim J$
- 107. A long solenoid of diameter 0.1 m has 2×10^4 turns per meter. At the centre of the solenoid, a coil of 100 turns and radius 0.01 m is placed with its axis coinciding with the solenoid axis. The current in the solenoid reduces at a constant rate to 0A from 4 A in 0.05 s. If the resistance of the coil is $10f^2\Omega$, the total charge flowing through the coil during this time is : [Ans. (3)]

11

108. Suppose the charge of a proton and an electron differ slightly. One of them is –e, the other is $(e + \Delta e)$. If the net of electrostatic force an gravitational force between two hydrogen atoms placed at a distance

d (much greater than atomic size) apart is zero, then Δe is of the order of [Given mass of hydrogen $m_h = 1.67 \times 10^{-27} \text{ kg}$ [Ans. (3)]

- (1) 10^{-20} C (2) 10^{-23} C (3) 10^{-37} C (4) 10^{-47} C
- 109. Two astronauts are floating in gravitational free space after having lost contact with their spaceship. The two will : [Ans. (2)]
 - (1) keep floating at the same distance between them.
 - (2) move towards each other.
 - (3) move away from each other.
 - (4) will become stationary.
- 110. The ratio of wavelengths of the last line of Balmer series and the last line of Lyman series is :

(a) 2 (2) 1 (3) 4 (4)
$$0.5$$
 [Ans. (4)]

111. The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature T (Kelvin) and mass m, is : [Ans. (2)]

(1)
$$\frac{h}{\sqrt{mkT}}$$
 (2) $\frac{h}{\sqrt{3mkT}}$ (3) $\frac{2h}{\sqrt{3mkT}}$ (4) $\frac{2h}{\sqrt{mkT}}$

112. A thin prism having refracting angle 10° is made of glass of refractive index 1.42. This prism is combined with another thin prism of glass of refractive index 1.7. This combination produces dispersion without deviation. The refracting angle of second prism should be : [Ans. (2)]

Column-2

a. Adiabatic

b. Isobaric

c. Isochoric

d. Isothermal

(2) $P \rightarrow c, Q \rightarrow a, R \rightarrow d, S \rightarrow b$

(1)
$$4^{\circ}$$
 (2) 6° (3) 8° (4)

113. Thermodynamic processes are indicated in the following diagram.

Match the following :

Column-1

- P. Process I
- Q. Process II
- R. Process III
- S. Process IV
- (1) $P \rightarrow a, Q \rightarrow c, R \rightarrow d, S \rightarrow b$
- (3) P \rightarrow c, Q \rightarrow d, R \rightarrow b, S \rightarrow a
- 114. A U rube with both ends open to the atmosphere, is partially filled with water. Oil, which is immiscible with water, is poured into one side until it stands at a distance of 10 mm above the water level on the other side. Meanwhile the water rises by 65 mm from its original level (see diagram). The density of the oil is :
 - (1) 650 kg m⁻³
 - (2) 425 kg m⁻³
 - (3) 800 kg m⁻³
 - (4) 928 kg m^{-3}

10°

~ 700 K 500 K

300 K

[Ans. (2)]

- 115. A spring of force constant k is cut into lengths of ratio 1 : 2 : 3. They are connected in series and the new force constant is k'. Then they are connected in parallel and force constant is k". Then k' : k" is :
 - (1) 1:6 (2) 1:9 (3) 1:11 (4) 1:14 [Ans. (3)]
- 116. Which of the following statements are **correct** ?
 - (a) Centre of mass of a body always coincides with the centre of gravity of the body.
 - (b) Centre of mass of a body is the point at which the total gravitational torque on the body is zero.
 - (c) A couple on a body produce both translational and rotational motion in a body.
 - (d) Mechanical advantage greater than one means that small effort can be used to lift a large load.
 - (1) (b) and (d) (2) (a) and (b) (3) (b) and (c) (4) (c) and (d)
- 117. A beam of light from a source L is incident normally on a plane mirror fixed at a certain distance x from the source. The beam is reflected back as a spot on a scale placed just above the source L. When the mirror is rotated through a small angle ", the spot of the light is found to move through a distance y on the scale. The angle " is given by : [Ans. (1)]

(1)
$$\frac{y}{2x}$$
 (2) $\frac{y}{x}$ (3) $\frac{x}{2y}$ (4) $\frac{x}{y}$

118. A gas mixture consists of 2 moles of O_2 and 4 moles of Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is : [Ans. (4)]

- (1) 4RT (2) 15 RT (3) 9RT (4) 11 RT
- 119. Consider a drop of rain water having mass 1g falling from a height of 1 km. It hits the ground with a speed of 50 m/s. Take 'g' constant with a value 10 m/s². The work done by the (i) gravitational force and the (ii) resistive force of air is : **[Ans. (4)]**
 - (1) (i) -10 J (ii) -8.25 J (2) (i) 1.25 J (ii) -8.25 J
 - (2) (1) 1.25 J (11) -0.25 J
 - (3) (i) 100 J (ii) 8.75 J
 - (4) (i) 10J (ii) -8.75J
- 120. A carnot engine having an efficiency of $\frac{1}{10}$ as heat engine, is used as a refrigerator. If the work done on the system is 10 J, the amount of energy absorbed from the reservoir at lower temperature is :
 - (1) 1 J (2) 90 J (3) 99 J (4) 100 J [Ans. (2)]
- 121. An arrangement of three parallel straight wires placed perpendicular to plane of paper carrying same current 'I' along the same direction is shown in Fig. Magnitude of force per unit length on the middle wire 'B' is given by : [Ans. (4)]

(1)
$$\frac{\sim_0 i^2}{2f d}$$

(2) $\frac{2\sim_0 i^2}{f d}$
(3) $\frac{\sqrt{2}\sim_0 i^2}{f d}$
(4) $\frac{\sim_0 i^2}{\sqrt{2}f d}$
(5) $\frac{\sqrt{2}}{\sqrt{2}f d}$

122. The x and y coordinates at the particle at any time are $x = 5t - 2t^2$ and y = 10t respectively, where x and y are in meters and t in seconds. The acceleration of the particle at t = 2s is : [Ans. (3)]

(1) 0 (2) 5 m/s^2 (3) -4 m/s^2 (4) -8 m/s^2

- 123. The ratio of resolving powers of an optical microscope for two wavelengths $\}_1 = 4000 \text{ Å}$ and $\}_2 = 6000 \text{ Å}$ is : [Ans. (3)]
 - (1) 8:27 (2) 9:4 (3) 3:2 (4) 16:81

[Ans. (1)]

- 124. Preeti reached the metro station and found that the escalator was not working. She walked up the stationary escalator in time t_1 . On other days, if she remains stationary on the moving escalator, then the escalator takes her up in time t_2 . The time taken by her to walk up on the moving escalator will be :
 - (1) $\frac{t_1 + t_2}{2}$ (2) $\frac{t_1 t_2}{t_2 t_1}$ (3) $\frac{t_1 t_2}{t_2 + t_1}$ (4) $t_1 t_2$ [Ans. (3)]
- 125. A spherical black body with a radius of 12 cm radiates 450 watt power at 500 K. If the radius were halved and the temperature doubled, the power radiated in watt would be : [Ans. (4)]
 - (1) 225 (2) 450 (3) 1000 (4) 1800
- 126. A potentiometer is an accurate and versatile device to make electrical measurements of E.M.F. because the method involves : [Ans. (2)]
 - (1) cells
 - (2) potential gradients
 - (3) a condition of no current flow through the galvanometer
 - (4) a combination of cells, galvanometer and resistances
- 127. The given electrical network is equivalent to :
 - (1) AND gate
 - (2) OR gate
 - (3) NOR gate
 - (4) NOT gate
- 128. In a common emitter transistor amplifier the audio signal voltage across the collector is 3 V. The resistance of collector is 3 $k\Omega$. If current gain is 100 and the base resistance is 2 $k\Omega$, the voltage power gain of the amplifier is : [Ans. (3)]
 - (1) 200 and 1000 (2) 15 and 200 (3) 150 and 15000 (4) 20 and 2000
- 129. Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc with angular velocities \check{S}_1 and \check{S}_2 . They are brought into contact face to face coinciding the axis of rotation. The expression for loss of energy during this process is :

(1)
$$\frac{1}{2}I(\check{S}_1 + \check{S}_2)^2$$
 (2) $\frac{1}{4}I(\check{S}_1 - \check{S}_2)^2$ (3) $I(\check{S}_1 - \check{S}_2)^2$ (4) $\frac{I}{8}(\check{S}_1 - \check{S}_2)^2$ [Ans. (2)]

- 130. Young's double slit experiment is first performed in air and then in a medium other than air. It is found that 8th bright fringe in the medium lies where 5th dark fringe lies in air. The refractive index of the medium is nearly :
 [Ans. (4)]
 - (1) 1.25 (2) 1.59 (3) 1.69 (4) 1.78

131. Which one of the following represents forward bias diode?

- 132. Two Polaroids P_1 and P_2 are placed with their axis perpendicular to each other. Unpolarised light I_0 is incident on P_1 . A third polaroid P_3 is kept in between P_1 and P_2 such that its axis makes an angle 45° with that of P_1 . The intensity of transmitted light through P_2 is : [Ans. (3)]
 - (1) $\frac{I_0}{2}$ (2) $\frac{I_0}{4}$ (3) $\frac{I_0}{8}$ (4) $\frac{I_0}{16}$

14 -

[Ans. (3)]

(1)
$$1.41 \times 10^{-8} \text{ T}$$
 (2) $2.83 \times 10^{-8} \text{ T}$ (3) $0.70 \times 10^{-8} \text{ T}$ (4) $4.23 \times 10^{-8} \text{ T}$

134. If $_{n_1}$ and $_{n_2}$ be the apparent angles of dip observed in two vertical planes at right angles to each other, then the true angle of dip $_n$ is given by : [Ans. (1)]

(1)
$$\cot^2_{\ \ \ } = \cot^2_{\ \ \ 1} + \cot^2_{\ \ \ 2}$$

(2) $\tan^2_{\ \ \ } = \tan^2_{\ \ 1} + \tan^2_{\ \ 2}$
(3) $\cot^2_{\ \ \ } = \cot^2_{\ \ \ 1} - \cot^2_{\ \ \ 2}$
(4) $\tan^2_{\ \ \ } = \tan^2_{\ \ \ 1} - \tan^2_{\ \ \ 2}$

135. The diagrams below show regions of equipotentials.

A positive charge is moved from A to B in each diagram.

(1) Maximum work is required to move q in figure (c).

(2) In all the four cases the work done is the same.

(3) Minimum work is required to move q in figure (a).

(4) Maximum work is required to move q in figure (b).

[Ans. (2)]

CHEMISTRY

SECTION – III

136. The reason for greater range of oxidation states in actinoids is attributed to: [Ans. (3)](1) the radioactive nature of actinoids (2) actinoid contraction (3) 5f, 6d and 7s levels having comparable energies (4) 4f and 5d levels being close in energies 137. An example of a sigma bonded organometallic compound is: [Ans. (2)] (1) Ruthenocene (2) Grignard's reagent (3) Ferrocene (4) Cobaltocene 138. Which one is the wrong statement? [Ans. (4)] (1) de-Broglie's wavelength is given by $\} = \frac{h}{mv}$, where m = mass of the particle, v = group velocity of the particle. (2) The uncertainty principle is $\Delta E \times \Delta t \ge \frac{h}{\Delta f}$. (3) Half filled and fully filled orbitals have greater stability due to greater exchange energy, greater symmetry and more balanced arrangement. (4) The energy of 2s orbital is less than the energy of 2p orbital in case of Hydrogen like atoms. 139. Mixture of chloroxylenol and terpineol acts as: [Ans. (2)] (1) analgesic (2) antiseptic (3) antipyretic (4) antibiotic 140. The element Z = 114 has been discovered recently. It will belong to which of the following family/group and electronic configuration? [Ans. (2)](2) Carbon family, [Rn] $5f^{14} 6d^{10} 7s^2 7p^2$ (1) Halogen family, [Rn] $5f^{14} 6d^{10} 7s^2 7p5$ (3) Oxygen family, [Rn] $5f^{14} 6d^{10} 7s^2 7p^4$ (4) Nitrogen family, [Rn] $5f^{14} 6d^{10} 7s^2 7p^6$ 141. A 20 litre container at 400 K contains CO₂(g) at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO₂ attains its maximum value, will be: (Given that : $SrCO_3(s) \implies SrO(s) + CO_2(g)$ Kp = 1.6atm) [Ans. (1)] (2) 10 litre (1) 5 litre (3) 4 litre (4) 2 litre 142. Predict the correct intermediate and product in the following reaction: [Ans. (4)] $H_3C-C \equiv CH \xrightarrow{H_2O, H_2SO_4} \text{ intermediate} \xrightarrow{} \text{ product}$ $HgSO_4 \xrightarrow{(A)} \xrightarrow{(B)}$ (1) A: $H_3C-C=CH_2$ B: $H_3C-C-CH_3$ SO₄ (2) A: $H_3C-C=CH_2$ B: $H_3C-C=CH_2$ OH SO₄ (3) A: $H_3C-C-C+CH_3$ B: $H_3C-C=CH_2$ OH SO₄ (4) A: $H_3C-C-CH_3$ B: $H_3C-C=CH_3$ (4) A: $H_3C-C=CH_2$ B: $H_3C-C-CH_3$ OH O 143. Which of the following is a sink for CO? [Ans. (2)] (1) Haemoglobin (2) Micro organisms present in the soil (3) Oceans (4) Plants

W

(4)

	-				
144.	4. Which of the following reactions is appropriate for converting acetamide to methanamine ? [Ans. (2)]				
	(1) Carbylamine reaction		(2) Hoffmann hypobromamide reaction		1
	(3) Stephens reaction		(4) Gabriels phthalim	ide synthesis	
145.	The species, having bon	d angles of 120° is			[Ans. (4)]
	(1) PH ₃	(2) CIF_3	(3) NCl ₃	(4) BCl ₃	
146.	The correct order of the complexes: CoCl ₃ .6 NH	e stoichiometries of AgCl I ₃ CoCl ₃ .5NH ₃ , COCl ₃ .4 N	formed when AgNO ₃ H ₃ respectively is:	in excess is treat	ed with the [Ans. (3)]
	(1) 1 AgCl, 3 AgCl, 2 A	gCl	(2) 3 AgCl, 1 AgCl, 2	2 AgCl	
	(3) 3 AgCl, 2 AgCl, 1 A	.gCl	(4) 2 AgCl, 3 AgCl, 1	1 AgCl	
147.	For a given reaction, Δt (Assume diat ΔH and Δt	$H = 35.5$ kj mol ⁻¹ and $\Delta S = S$ do not vary with tempera	$= 83.6 \text{ JK}^{-1} \text{ mol}^{-1}.$ The ature)	e reaction is spon	taneous at : [Ans. (2)]
	(1) T < 425 K	(2) $T > 425 K$	(3) all temperatures	(4) $T > 298 K$	
148.	Match the interhalogen of code.	compounds of column I wi	th the geometry in colu	umn II and assign	the correct [Ans. (2)]
	Column I	Column II			
	(a) XX´	(i) T – shape			
	(b) XX'_{3}	(ii) Pentagonal bipyramic	lal		
	(c) XX'_{5}	(iii) Linear			
	(d) XX'_7	(iv) Square –pyramidal			
		(v) Tetrahedral			
	Code:				
	(a)	(b)	(c)	(d)	
	(1) (iii)	(iv)	(i)	(ii)	
	(2) (iii)	(i)	(iv)	(ii)	
	(3) (v)	(iv)	(iii)	(ii)	
	(4) (iv)	(iii)	(ii)	(i)	
149.	Identify A and predict th OCH ₃	ne type of reaction			[Ans. (1)]
	$\bigcup_{Br} \xrightarrow{NaNH_2} A$				
	(1) OCH ₃ NH ₂	and substitution reaction			
	(2) NH ₂	and elimination addition	reaction		
	(3) Br	and cine substitution reac	tion		
	OCH ₃				

and cine substitution reaction

- 150. Which one of the following statements is not correct ?
 - (1) Ca talyst does not initiate any reaction.
 - (2) The value of equilibrium constant is changed in the presence of a catalyst in the reaction at equilibrium.
 - (3) Enzymes catalyse mainly bio-chemical reactions.
 - (4) Coenzymes increase the catalytic activity of enzyme.
- 151. Name the gas that can readily decolourise acidified KMnO₄, solution [Ans. (2)]
 - (1) CO_2 (2) SO_2 (3) NO_2 (4) P_2O_5
- 152. The correct increasing order of basic strength for the following compounds is : [Ans. (4)]

- (1) II < III < I (2) III < I < II (3) III < II < I (4) II < I < III153. If molality of the dilute solution is doubled, the value of molal depression constant (K_f) will be:
- (1) doubled(2) halved(3) tripled(4) unchanged[Ans. (4)]154. Of the following, which is the product formed when cyclohexanone undergoes aldol condensation
followed by heating ?[Ans. (2)]

155. The equilibrium constants of the following are :

 $N_2 + 3H_2 \Longrightarrow 2NH_3 \qquad \text{K}_1$

$$N_2 + O_2 \Longrightarrow 2NO$$
 K₂

$$H_2 + \frac{1}{2}O_2 \to H_2O \qquad K_3$$

The equilibrium constant (K) of the reaction $2NH_3 + \frac{5}{2}O_2 \xleftarrow{\kappa} 2NO + 3H_2O$, will be:

- (1) $K_1 K_3^3 / K_2$ (2) $K_2 K_3^3 / K_1$ (3) $K_2 K_3 / K_1$ (4) $K_2^3 K_3 / K_1$
- 156. The correct statement regarding electrophile is:
 - (1) Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from a nucleophile
 - (2) Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from another electrophile
 - (3) Electrophiles are generally neutral species and can form a bond by accepting a pair of electrons from a nucleophile
 - (4) Electrophile can be either neutral or positively charged species and can form a bond by accepting a pair of electrons from a nucleophile

[Ans. (2)]

[Ans. (2)]

[Ans. (4)]

	(1) $\text{Hgl}_2, \mathbf{l}_3$	(2) Hgl ₂ ,I	(3) HgI_{4}^{-} , I_{3}^{-}	(4) Hg_2I_2,I	19
10/.	$ng \cup 1_2$ and 1_2 both when	uissoiveu in water contai	$rac{1}{2}$ $rac{1}{2}$ $rac{1}{2}$ $rac{1}{2}$ $rac{1}{2}$	species formed	18. [AIIS. (3)]
167	(3) J-memyi-4-0xonex-	dissolved in water contai	(4) 5 -Keip-2-methyl	nex-o-enal	[Ang (2)]
	(1) 3-keto-2-methylhex-	-4-ena	(2) 5-formylhex-2- ϵ	en-3-one	
	H - C	is		2	
100.		ic compound			[AII5. (1)]
166	The IIIPAC name of the $IIIPAC$	ne compound			[Ans (1)]
	(4) Denaturation makes	the proteins more active		5.	
	(2) Ovaluation is a simp	ne 1000 reserve in egg -W	unit.	a	
	(1) Insulin maintains su (2) Ovalbumin is a similar	lgar level in the blood of a	i numan dody.		
165.	(1) Inculin maintains	statements is not correct	human hadr		[Ans. (4)]
1.67	(1) Molality \mathbf{W}	(2) Molarity	(3) Mole fraction	(4) Weight p	ercentage
164.	Which of the followi	ng 1s dependent on tem	perature ?	(4) *** * 1	[Ans. (2)]
1	(4) Both bond angles an	d bond length remains sa	me		F.4. (A) -
	(3) Both bond angle and	bond length change			
	(2) Bond angle changes	but bond length remains	same		
	(1) Bond angle remains	same but bond length cha	inges		
163.	With respect to the conf	ormers of ethane, which o	of the following stateme	ents is true?	[Ans. (4)]
	(3) It is d^2sp^3 hybridised	l and octahedral	(4) It is dsp^2 hybrid	ised and square	planar
	(1) It is sp^3d^2 hybridised	l and octahedral	(2) It is sp^3d^2 hybrid	lised and tetrahe	edral
162.	Pick out the correct state	ement with respect to [Mr	$(CN)_{6}]^{3-}$:		[Ans. (3)]
	(3) $[Co(H_2O)_6]^{3+}$, $[Co(e^{-3})^{3+}]^{3+}$	$[n)_3]^{3+}, [Co(en)_3]^{3+}$	(4) $[Co(NH_3)_6]^{3+}$, [0	$Co(en)_3]^{3+}$, [Co	$(H_2O)_6]^{3+}$
	(1) $[\text{Co}(\text{en})_3]^3+, [\text{Co}(\text{en})_3]^3+, [$	$(\mathrm{NH}_3)_6]^3 + [\mathrm{Co} (\mathrm{H}_2\mathrm{O})_6]^{3+}$	(2) $[Co(H_2O)_6]^{3+}$, [0	$Co(en)_3]^{3+}$, [Co($(NH_3)_6]^{3+}$
101.	Co3+is:	Tor the wavelengths of		e region for the	[Ans. (1)]
161	(1) ethyl chlorides	(2) IOUODEIIZEIIE	(3) prierior absorption in the visible	(4) Delizene	complexes of
160.	(1) athyl ablaridae	(2) indebangene	(2) phonol	(1) honzona	[Ans. (3)]
160	(4) Frenkel defect is fav equal.	oured in those ionic com	pounds in which sizes (of cation and an	ions are almost
	(3) NaCl(s) is insulatot,	silicon is semiconductor,	silver is conductor, qua	utz is piezo elec	tric crystal
	(2) Density decreases in	case of crystals with Sch	ottky's defect.		
	(1) $FeO_{0.98}$ has non store	chiometric metal deficient	cy defect		
159.	Which is the incorrect st	tatement?			[Ans. (1, 4)]
	(1) $BeCl_2, XeF_2$	(2) TeI_2, XeF_2	$(3) IBr_2^-, XeF_2$	(4) IF_3 , XeF	2
158.	Which of the following	pairs of compounds is iso	electronic and isostruct	ural?	[Ans. (None)]
	(1) 1136.25 J	(2) –500 J	(3) –505 J	(4) +505 J	
157.	A gas is allowed to expa from an initial volume of gas in joules will be :	of 2.50 L to a final volum	e of 4.50 L. The chang	e in internal press	ergy AU of the [Ans. (3)]

168. It is because of inability of ns^2 electrons of the valence shell to participate in bonding that: [Ans. (1)] (1) Sn^{2+} is reducing while Pb⁴⁺ is oxidising (2) Sn^{2+} is oxidising while Pb⁴⁺ is reducing (3) Sn^{2+} and Pb^{2+} are both oxidising and reducing (4) Sn^{4+} is reducing while Pb^{4+} is oxidising 169. Mechanism of a hypothetical reaction $X_2 + Y_2 \rightarrow 2 XY$ is given below ; [Ans. (4)] $X_2 \rightarrow >X + X(fast)$ (ii) $X + Y_2 \implies XY + Y$ (slow) (i) (iii) $X + Y \rightarrow XY$ (fast) The overall order of the reaction will be: (2) 2(3) 0(4) 1.5(1) I 170. Concentration of the Ag⁺ ions in a saturated solution of Ag₂C₂O₄ is 2.2×10^{-4} mol L⁻¹. Solubility product of Ag₂C₂O₄ is: [Ans. (4)] (1) 2.42×10^{-8} (3) 4.5×10^{-11} (2) 2.66×10^{-12} (4) 5.3×10^{-12} 171. Extraction of gold and silver involves leaching with CN ~ ion. Silver is later recovered by: [Ans. (4)] (1) liquation (2) distillation (3) zone refining (4) displacement with Zn 172. Which one is the correct order of aridity ? [Ans. (2)] (1) $CH_2 = CH_2 > CH_3 - CH = CH_2 > CH_3 - C \equiv CH > CH \equiv CH$ (2) CH = CH > CH₃-C = CH > CH₂ = CH₂ > CH₃-CH₃ (3) $CH \equiv CH > CH_2 = CH_2 > CH_3 - C \equiv CH > CH_3 - CH_3$ (4) $CH_3-CH_3 > CH_2 = CH_2 > CH_3 - C \equiv CH > CH \equiv H$ 173. Ionic mobility of which of the following alkali metal ions is lowest when aqueous solution of their salts are put under an electric field ? [Ans. (4)]

- (1) Na (2) K (3) Rb (4) Li
- 174. Consider the reactions:

 $(C_{2}H_{6}O) \xrightarrow{\text{ST3 K}} A \xrightarrow{[Ag(NH_{3})_{2}]^{+}}_{OH \Delta} \text{Silver mirror observed}$ $(C_{2}H_{6}O) \xrightarrow{\text{OH} \Delta} Y$ $(C_{2}H_{6}O) \xrightarrow{\text{NH}_{2}-NH-C-NH_{2}} Y$

Identify A, X, Yand Z

- (1) A-Methoxymethane, X-Ethanoic acid, Y-Acetate ion, Z-hydrazine.
- (2) A-Methoxymethane, X-Ethanol, Y-Ethanoic acid, Z-Semicarbazide.
- (3) A-Ethanal, X-Ethanol, Y-But-2-enal, Z-Semicarbazone.
- (4) A-Ethanol, X-Acetaldehyde, Y-Butanone, Z-Hydrazone.
- 175. In which pair of ions both the species contain S—S bond?

(1)
$$S_2O_7^{2-}, S_2O_3^{2-}$$
 (2) $S_2O_6^{2-}, S_2O_3^{2-}$ (3) $S_2O_7^{2-}, S_2O_8^{2-}$ (4) $S_2O_6^{2-}, S_2O_7^{2-}$

176. Which one is the most acidic compound ?

[Ans. (3)]

[Ans. (2)]

[Ans. (4)]

[Ans. (3)]

 $Zn|ZnSO_4 (0.01 M)||$ CuSO₄ (1.0 M)|Cu, the emf of this Daniel cell is E₁. When the concentration of ZnSO₄ is changed to 1.0 M and that of CuSO₄ changed to 0.01 M, and that of CuSO₄ changed to 0.01M, the emf changes to E₂. From the followings, which one is the relationship between

	E_1 and E_2 ? (Given, $\frac{RT}{F}$	= 0.059)			
	(1) $E_1 = E_2$	(2) $E_1 < E_2$	(3) $E_1 > E_2$	(4) $E_2 = 0 \neq E_1$	
178.	A first order reaction has the reactant to reduce to	s a specific reaction rate of 5 g ?	10^{-2} sec^{-1} . How much	time will it take	for 20 g of [Ans. (2)]
	(1) 238.6 sec	(2) 138.6 sec	(3) 346.5 sec	(4) 693.0 sec	
179.	The most suitable method	d of separation of 1 mixture	e of ortho and para - nit	rophenols is	[Ans. (4)]
	(1) Sublimation	(2) Chromatography	(3) Crystallisation	(4) Steam distill	ation
180.	Which one of the following	ing pairs of species have the	e same bond order?		[Ans. (3)]

(1) CO, NO (2) O_2 , NO⁺ (3) CN⁻, CO (4) N_2 , O_2^-